Factory¶
danling.metric.factory
¶
binary_metrics
¶
binary_metrics(ignore_index: int | None = -100, **kwargs)
Create a pre-configured Metrics instance for binary classification tasks.
This factory function returns a Metrics object with a standard set of binary classification metrics, including: - AUROC (Area Under ROC Curve) - AUPRC (Area Under Precision-Recall Curve) - Accuracy - MCC (Matthews Correlation Coefficient) - F1 Score
The returned Metrics instance is ready to use with model predictions/logits and binary labels (0/1 or False/True).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int | None
|
Value in the target to ignore (e.g., padding). |
-100
|
|
Additional metric functions to include or override default metrics |
{}
|
Returns:
Name | Type | Description |
---|---|---|
Metrics |
A configured Metrics instance for binary classification |
Source code in danling/metric/factory.py
multiclass_metrics
¶
multiclass_metrics(
num_classes: int,
ignore_index: int | None = -100,
**kwargs
)
Create a pre-configured Metrics instance for multiclass classification tasks.
This factory function returns a Metrics object with a standard set of multiclass classification metrics, including: - AUROC (per class and macro-averaged) - AUPRC (per class and macro-averaged) - Accuracy - MCC (Matthews Correlation Coefficient) - F1 Score (macro-averaged)
The returned Metrics instance is ready to use with model logits (shape [batch_size, num_classes]) and class labels (shape [batch_size]).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int
|
Number of classes in the classification task |
required |
|
int | None
|
Value in the target to ignore (e.g., padding). |
-100
|
|
Additional metric functions to include or override default metrics |
{}
|
Returns:
Name | Type | Description |
---|---|---|
Metrics |
A configured Metrics instance for multiclass classification |
Source code in danling/metric/factory.py
multiclass_metric_meters
¶
multiclass_metric_meters(
num_classes: int,
ignore_index: int | None = -100,
**kwargs
)
Create a pre-configured MetricMeters instance for multiclass classification tasks.
Similar to multiclass_metrics(), but returns a MetricMeters object that is more memory efficient by only tracking running averages instead of storing all predictions and labels. This is suitable for metrics that can be meaningfully averaged across batches.
The returned MetricMeters includes: - Accuracy - F1 Score (macro-averaged)
Note: AUROC and AUPRC are not included as they cannot be meaningfully averaged batch-by-batch. Use multiclass_metrics() if you need those metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int
|
Number of classes in the classification task |
required |
|
int | None
|
Value in the target to ignore (e.g., padding). |
-100
|
|
Additional metric functions to include or override default metrics |
{}
|
Returns:
Name | Type | Description |
---|---|---|
MetricMeters |
A configured MetricMeters instance for multiclass classification |
Source code in danling/metric/factory.py
multilabel_metrics
¶
multilabel_metrics(
num_labels: int,
ignore_index: int | None = -100,
**kwargs
)
Create a pre-configured Metrics instance for multi-label classification tasks.
In multi-label classification, each sample can belong to multiple classes simultaneously. This factory returns a Metrics object with metrics appropriate for multi-label tasks: - AUROC (per label and macro-averaged) - AUPRC (per label and macro-averaged) - Accuracy (exact match or subset accuracy) - MCC (Matthews Correlation Coefficient, per label) - F1 Score (macro-averaged)
The returned Metrics instance expects model outputs with shape [batch_size, num_labels] and binary labels with the same shape.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int
|
Number of possible labels in the multi-label task |
required |
|
int | None
|
Value in the target to ignore. |
-100
|
|
Additional metric functions to include or override default metrics |
{}
|
Returns:
Name | Type | Description |
---|---|---|
Metrics |
A configured Metrics instance for multi-label classification |
Source code in danling/metric/factory.py
multilabel_metric_meters
¶
multilabel_metric_meters(
num_labels: int,
ignore_index: int | None = -100,
**kwargs
)
Create a pre-configured MetricMeters instance for multi-label classification tasks.
Similar to multilabel_metrics(), but returns a MetricMeters object that is more memory efficient by only tracking running averages instead of storing all predictions and labels.
The returned MetricMeters includes: - Accuracy (exact match or subset accuracy) - F1 Score (macro-averaged)
Note: AUROC and AUPRC are not included as they cannot be meaningfully averaged batch-by-batch. Use multilabel_metrics() if you need those metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int
|
Number of possible labels in the multi-label task |
required |
|
int | None
|
Value in the target to ignore. |
-100
|
|
Additional metric functions to include or override default metrics |
{}
|
Returns:
Name | Type | Description |
---|---|---|
MetricMeters |
A configured MetricMeters instance for multi-label classification |
Source code in danling/metric/factory.py
regression_metrics
¶
regression_metrics(
num_outputs: int = 1, ignore_nan: bool = True, **kwargs
)
Create a pre-configured Metrics instance for regression tasks.
This factory function returns a Metrics object with standard regression metrics: - R² Score (Coefficient of Determination) - Pearson Correlation Coefficient - Spearman Correlation Coefficient - RMSE (Root Mean Squared Error)
The metrics can handle both single-output regression (e.g., predicting a single value) and multi-output regression (e.g., predicting multiple values per sample).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int
|
Number of regression outputs per sample. |
1
|
|
bool
|
Whether to ignore NaN values in inputs/targets. |
True
|
|
Additional metric functions to include or override default metrics |
{}
|
Returns:
Name | Type | Description |
---|---|---|
Metrics |
A configured Metrics instance for regression tasks |