Metrics¶
danling.metric.metrics
¶
Metrics
¶
Bases: Metric
A comprehensive metric tracking system that maintains the complete history of predictions and labels.
Metrics is designed for computing evaluations that require access to the entire dataset history, such as AUROC, Pearson correlation, or other metrics that cannot be meaningfully averaged batch-by-batch.
Attributes:
Name | Type | Description |
---|---|---|
metrics |
FlatDict[str, Callable]
|
A dictionary of metric functions to be computed |
preprocess |
Callable
|
Optional preprocessing function to apply to inputs and targets |
val |
RoundDict[str, float | flist]
|
Metrics computed on the current batch only |
avg |
RoundDict[str, float | flist]
|
Metrics computed on all accumulated data |
input |
Tensor
|
The input tensor from the latest batch |
target |
Tensor
|
The target tensor from the latest batch |
inputs |
Tensor
|
Concatenation of all input tensors seen so far |
targets |
Tensor
|
Concatenation of all target tensors seen so far |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
A single mapping of metrics or callable metric functions |
()
|
|
|
device | None
|
Device to store tensors on |
None
|
|
Callable
|
Function to preprocess inputs before computing metrics |
base_preprocess
|
|
Callable
|
Named metric functions to compute |
{}
|
Examples:
Notes
Metrics
stores the complete prediction and target history, which is memory-intensive but necessary for metrics like AUROC that operate on the entire dataset.- For metrics that can be meaningfully averaged batch-by-batch (like accuracy),
consider using
MetricMeter
for better memory efficiency. - All metrics are synchronized across devices in distributed training environments.
See Also
MetricMeters
: Memory-efficient metric tracker that averages multiple metrics batch-by-batch.
Source code in danling/metric/metrics.py
Python | |
---|---|
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|
reset
¶
Reset the metric state variables to their default value.
The tensors in the default values are also moved to the device of
the last self.to(device)
call.
Source code in danling/metric/metrics.py
ScoreMetrics
¶
Bases: Metrics
ScoreMetrics
is a subclass of Metrics that supports scoring.
Score is a single value that best represents the performance of the model. It is the core metrics that we use to compare different models. For example, in classification, we usually use auroc as the score.
ScoreMetrics
requires two additional arguments: score_name
and best_fn
.
score_name
is the name of the metric that we use to compute the score.
best_fn
is a function that takes a list of values and returns the best value.
best_fn
is only not used by ScoreMetrics
, it is meant to be accessed by other classes.
Attributes:
Name | Type | Description |
---|---|---|
score_name |
str
|
The name of the metric that we use to compute the score. |
best_fn |
Callable
|
A function that takes a list of values and returns the best value. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
A single mapping of metrics. |
()
|
|
|
str | None
|
The name of the metric that we use to compute the score. Defaults to the first metric. |
None
|
|
Callable | None
|
A function that takes a list of values and returns the best value. Defaults to |
max
|
|
FlatDict[str, Callable]
|
Metrics. |
{}
|
Notes
ScoreMetrics
adds the ability to designate one metric as the “score” metric- The score metric is typically used for model selection or early stopping
best_fn
determines how to select the “best” score (e.g., max for accuracy, min for loss)- Access the score using
metrics.batch_score
ormetrics.average_score