functional¶
danling.tensor.functional
¶
tensor_mask
¶
tensor_mask(
tensors: Sequence,
size: Size,
*,
batch_first: bool = True,
padding_value: float = 0.0,
mask_value: bool = False,
squeeze_channel: bool = True
) -> Tuple[Tensor, Tensor]
Create a padded tensor and corresponding mask from variable-length tensors.
This is a core utility function that powers the NestedTensor implementation. It takes a sequence of tensors with potentially different lengths and creates:
- A padded tensor containing all sequences (with padding where needed)
- A boolean mask indicating which elements are real vs padding
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Sequence
|
Sequence of tensors to be combined and padded |
required |
|
Size
|
Target size for the padded tensor and mask |
required |
|
bool
|
If True, first dimension is batch (B, N, *), otherwise sequence (N, B, *) |
True
|
|
float
|
Value to use for padding empty positions in the padded tensor |
0.0
|
|
bool
|
Value to use in the mask to indicate padding (typically False) |
False
|
|
bool
|
Whether to squeeze the channel dimension if it’s 1 |
True
|
Returns:
Type | Description |
---|---|
Tuple[Tensor, Tensor]
|
tuple[Tensor, Tensor]:
- padded_tensor: A tensor of shape |
Examples:
With 1D tensors:
Python Console Session | |
---|---|
With 2D tensors:
Source code in danling/tensor/functional.py
pad_tensor
¶
pad_tensor(
tensors: Sequence,
size: Size,
*,
batch_first: bool = True,
padding_value: float = 0.0
) -> Tensor
Pads a tensor with a sequence of tensors and desired size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Sequence
|
sequence of tensors to be padded. |
required |
|
Size
|
desired size of the padded tensor (and mask tensor). |
required |
|
bool
|
whether to put the batch dimension in the first dimension.
Defaults to |
True
|
|
mask value in the mask tensor.
Defaults to |
required |
Returns:
Type | Description |
---|---|
Tensor
|
padded tensor |
Source code in danling/tensor/functional.py
mask_tensor
¶
mask_tensor(
tensors: Sequence,
size: Size,
*,
batch_first: bool = True,
mask_value: bool = False,
squeeze_channel: bool = True
) -> Tensor
Build a tensor mask with a sequence of tensors and desired size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Sequence
|
sequence of tensors to be padded. |
required |
|
Size
|
desired size of the padded tensor (and mask tensor). |
required |
|
bool
|
whether to put the batch dimension in the first dimension.
Defaults to |
True
|
|
bool
|
mask value in the mask tensor.
Defaults to |
False
|
|
bool
|
whether to squeeze the channel dimension if it is 1. |
True
|
Returns:
Type | Description |
---|---|
Tensor
|
tensor mask |