Skip to content

functional

danling.tensor.functional

tensor_mask

Python
tensor_mask(
    tensors: Sequence,
    size: Size,
    *,
    batch_first: bool = True,
    padding_value: float = 0.0,
    mask_value: bool = False,
    squeeze_channel: bool = True
) -> Tuple[Tensor, Tensor]

Create a padded tensor and corresponding mask from variable-length tensors.

This is a core utility function that powers the NestedTensor implementation. It takes a sequence of tensors with potentially different lengths and creates:

  1. A padded tensor containing all sequences (with padding where needed)
  2. A boolean mask indicating which elements are real vs padding

Parameters:

Name Type Description Default

tensors

Sequence

Sequence of tensors to be combined and padded

required

size

Size

Target size for the padded tensor and mask

required

batch_first

bool

If True, first dimension is batch (B, N, *), otherwise sequence (N, B, *)

True

padding_value

float

Value to use for padding empty positions in the padded tensor

0.0

mask_value

bool

Value to use in the mask to indicate padding (typically False)

False

squeeze_channel

bool

Whether to squeeze the channel dimension if it’s 1

True

Returns:

Type Description
Tuple[Tensor, Tensor]

tuple[Tensor, Tensor]: - padded_tensor: A tensor of shape size containing the input tensors with padding - mask_tensor: A boolean tensor of shape size (or size[:-1] if squeeze_channel). If mask_value is False, where True indicates real values and False indicates padding. If mask_value is True, where False indicates real values and True indicates padding.

Examples:

Python Console Session
>>> from danling.tensor.functional import tensor_mask
>>> import torch

With 1D tensors:

Python Console Session
1
2
3
4
5
6
7
8
>>> tensor_list = [torch.tensor([1, 2, 3]), torch.tensor([4, 5])]
>>> tensor, mask = tensor_mask(tensor_list, (2, 3))
>>> tensor
tensor([[1, 2, 3],
        [4, 5, 0]])
>>> mask
tensor([[ True,  True,  True],
        [ True,  True, False]])

With 2D tensors:

Python Console Session
1
2
3
4
5
6
7
8
9
>>> a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> b = torch.tensor([[1, 2], [3, 4]])
>>> tensor, mask = tensor_mask([a, b], (2, 3, 3))
>>> tensor.view(2, -1)
tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9],
        [1, 2, 0, 3, 4, 0, 0, 0, 0]])
>>> mask.view(2, -1)
tensor([[ True,  True,  True,  True,  True,  True,  True,  True,  True],
        [ True,  True, False,  True,  True, False, False, False, False]])
Source code in danling/tensor/functional.py
Python
def tensor_mask(
    tensors: Sequence,
    size: torch.Size,
    *,
    batch_first: bool = True,
    padding_value: float = 0.0,
    mask_value: bool = False,
    squeeze_channel: bool = True,
) -> Tuple[Tensor, Tensor]:
    r"""
    Create a padded tensor and corresponding mask from variable-length tensors.

    This is a core utility function that powers the NestedTensor implementation.
    It takes a sequence of tensors with potentially different lengths and creates:

    1. A padded tensor containing all sequences (with padding where needed)
    2. A boolean mask indicating which elements are real vs padding

    Args:
        tensors: Sequence of tensors to be combined and padded
        size: Target size for the padded tensor and mask
        batch_first: If True, first dimension is batch (B, N, *), otherwise sequence (N, B, *)
        padding_value: Value to use for padding empty positions in the padded tensor
        mask_value: Value to use in the mask to indicate padding (typically False)
        squeeze_channel: Whether to squeeze the channel dimension if it's 1

    Returns:
        tuple[Tensor, Tensor]:
            - padded_tensor: A tensor of shape `size` containing the input tensors with padding
            - mask_tensor: A boolean tensor of shape `size` (or `size[:-1]` if squeeze_channel).
              If `mask_value` is False, where True indicates real values and False indicates padding.
              If `mask_value` is True, where False indicates real values and True indicates padding.

    Examples:
        >>> from danling.tensor.functional import tensor_mask
        >>> import torch

        With 1D tensors:
        >>> tensor_list = [torch.tensor([1, 2, 3]), torch.tensor([4, 5])]
        >>> tensor, mask = tensor_mask(tensor_list, (2, 3))
        >>> tensor
        tensor([[1, 2, 3],
                [4, 5, 0]])
        >>> mask
        tensor([[ True,  True,  True],
                [ True,  True, False]])

        With 2D tensors:
        >>> a = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
        >>> b = torch.tensor([[1, 2], [3, 4]])
        >>> tensor, mask = tensor_mask([a, b], (2, 3, 3))
        >>> tensor.view(2, -1)
        tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9],
                [1, 2, 0, 3, 4, 0, 0, 0, 0]])
        >>> mask.view(2, -1)
        tensor([[ True,  True,  True,  True,  True,  True,  True,  True,  True],
                [ True,  True, False,  True,  True, False, False, False, False]])
    """

    tensor = torch.full(size, fill_value=padding_value, dtype=tensors[0].dtype, device=tensors[0].device)
    if squeeze_channel and tensors[0].ndim > 1 and len({t.size(-1) for t in tensors}) == 1:
        size = size[:-1]
    mask = torch.full(size, fill_value=mask_value, dtype=torch.bool, device=tensors[0].device)
    for i, t in enumerate(tensors):
        tensor[i][tuple(slice(0, t.shape[dim]) for dim in range(len(size) - 1))] = t  # type: ignore
        mask[i][tuple(slice(0, t.shape[dim]) for dim in range(len(size) - 1))] = not mask_value
    if not batch_first:
        tensor, mask = tensor.transpose(0, 1), mask.transpose(0, 1)
    if squeeze_channel and mask.size(-1) == 1:
        mask = mask.squeeze(-1)
    return tensor, mask

pad_tensor

Python
pad_tensor(
    tensors: Sequence,
    size: Size,
    *,
    batch_first: bool = True,
    padding_value: float = 0.0
) -> Tensor

Pads a tensor with a sequence of tensors and desired size.

Parameters:

Name Type Description Default

tensors

Sequence

sequence of tensors to be padded.

required

size

Size

desired size of the padded tensor (and mask tensor).

required

batch_first

bool

whether to put the batch dimension in the first dimension. Defaults to True.

True

mask_value

mask value in the mask tensor. Defaults to False.

required

Returns:

Type Description
Tensor

padded tensor

Source code in danling/tensor/functional.py
Python
def pad_tensor(tensors: Sequence, size: torch.Size, *, batch_first: bool = True, padding_value: float = 0.0) -> Tensor:
    r"""
    Pads a tensor with a sequence of tensors and desired size.

    Args:
        tensors: sequence of tensors to be padded.
        size: desired size of the padded tensor (and mask tensor).
        batch_first: whether to put the batch dimension in the first dimension.
            Defaults to `True`.
        mask_value: mask value in the mask tensor.
            Defaults to `False`.

    Returns:
        (Tensor): padded tensor
    """

    ret = torch.full(size, fill_value=padding_value, dtype=tensors[0].dtype, device=tensors[0].device)
    for i, t in enumerate(tensors):
        ret[i][tuple(slice(0, t.shape[dim]) for dim in range(len(size) - 1))] = t  # type: ignore
    if not batch_first:
        ret = ret.transpose(0, 1)
    return ret

mask_tensor

Python
mask_tensor(
    tensors: Sequence,
    size: Size,
    *,
    batch_first: bool = True,
    mask_value: bool = False,
    squeeze_channel: bool = True
) -> Tensor

Build a tensor mask with a sequence of tensors and desired size.

Parameters:

Name Type Description Default

tensors

Sequence

sequence of tensors to be padded.

required

size

Size

desired size of the padded tensor (and mask tensor).

required

batch_first

bool

whether to put the batch dimension in the first dimension. Defaults to True.

True

mask_value

bool

mask value in the mask tensor. Defaults to False.

False

squeeze_channel

bool

whether to squeeze the channel dimension if it is 1.

True

Returns:

Type Description
Tensor

tensor mask

Source code in danling/tensor/functional.py
Python
def mask_tensor(
    tensors: Sequence,
    size: torch.Size,
    *,
    batch_first: bool = True,
    mask_value: bool = False,
    squeeze_channel: bool = True,
) -> Tensor:
    r"""
    Build a tensor mask with a sequence of tensors and desired size.

    Args:
        tensors: sequence of tensors to be padded.
        size: desired size of the padded tensor (and mask tensor).
        batch_first: whether to put the batch dimension in the first dimension.
            Defaults to `True`.
        mask_value: mask value in the mask tensor.
            Defaults to `False`.
        squeeze_channel: whether to squeeze the channel dimension if it is 1.

    Returns:
        (Tensor): tensor mask
    """

    if squeeze_channel and tensors[0].ndim > 1 and len({t.size(-1) for t in tensors}) == 1:
        size = size[:-1]
    ret = torch.full(size, fill_value=mask_value, dtype=torch.bool, device=tensors[0].device)
    for i, t in enumerate(tensors):
        ret[i][tuple(slice(0, t.shape[dim]) for dim in range(len(size) - 1))] = not mask_value
    if not batch_first:
        ret = ret.transpose(0, 1)
    return ret