跳转至

AccelerateRunner

danling.runner.AccelerateRunner

Bases: TorchRunner, Accelerator

Set up everything for running a job.

AccelerateRunner uses [accelerate][accelerate] as distributed backend to provide seamless distributed training experience.

AccelerateRunner will automatically prepare everything, including model, criterion, optimizer, scheduler, and dataloaders for distribute training, mixed precision, and deepspeed (optional).

In fact, you don’t even need to create dataloaders, just define datasets and AccelerateRunner will create dataloaders for you. AccelerateRunner will inspect the train flag in corresponding dataset to set shuffle and drop_last automatically.

Source code in danling/runner/accelerate_runner.py
Python
class AccelerateRunner(TorchRunner, Accelerator):  # pylint: disable=too-many-public-methods
    r"""
    Set up everything for running a job.

    `AccelerateRunner` uses [`accelerate`][accelerate] as distributed backend to
    provide seamless distributed training experience.

    `AccelerateRunner` will automatically [`prepare`][accelerate.Accelerator.prepare] everything,
    including `model`, `criterion`, `optimizer`, `scheduler`, and `dataloaders` for distribute training,
    mixed precision, and deepspeed (optional).

    In fact, you don't even need to create `dataloaders`, just define
    `datasets` and `AccelerateRunner` will create `dataloaders` for you.
    `AccelerateRunner` will inspect the `train` flag in corresponding dataset to
    set `shuffle` and `drop_last` automatically.
    """

    _accelerate: FlatDict | None = None

    def __init__(self, config: Config) -> None:
        ac.check()
        TorchRunner.__init__(self, config)
        Accelerator.__init__(self, **self.accelerate)
        if self.distributed:
            object_list = [self.id, self.timestamp]
            dist.broadcast_object_list(object_list)
            self.id, self.timestamp = object_list

    def __post_init__(self) -> None:
        BaseRunner.__post_init__(self)
        self.project_configuration.set_directories(self.dir)
        if self.datasets:
            self.build_dataloaders()
        if self.config.get("log_interval") is None:
            self.config.log_interval = max(ceil(max(len(d) for d in self.dataloaders.values()) / 10), 1)
        self.model, self.criterion, self.optimizer, self.scheduler = self.prepare(
            self.model, self.criterion, self.optimizer, self.scheduler
        )

    def train_step(self, data) -> torch.Tensor:
        with self.autocast(), self.accumulate():
            input = data["input"] if isinstance(data, Mapping) else data[0]
            target = data["target"] if isinstance(data, Mapping) else data[1]
            pred = self.model(**input) if isinstance(input, Mapping) else self.model(input)
            loss = self.criterion(pred, target)
            if self.metrics is not None:
                self.metrics.update(pred.squeeze(-1), target)
            self.advance(loss)
        return loss

    def advance(self, loss) -> None:
        r"""
        Backward loss and step optimizer & scheduler.

        Args:
            loss: The loss tensor from which to backpropagate.
        """

        self.backward(loss)
        if self.sync_gradients:
            if self.config.get("max_grad_value") is not None:
                self.clip_grad_value_(self.model.parameters(), self.config["max_grad_value"])
            if self.config.get("max_grad_norm") is not None:
                self.clip_grad_norm_(self.model.parameters(), self.config["max_grad_norm"])
        self.optimizer.step()
        if self.scheduler is not None:
            self.scheduler.step()
        if self.ema is not None:
            self.ema.update()
        self.optimizer.zero_grad()
        self.config.steps = self.step
        self.config.iters += 1

    def unwrap(self, model: nn.Module) -> nn.Module:
        return self.unwrap_model(model)

    @property
    def accelerate(self) -> FlatDict:
        if self._accelerate is None:
            self._accelerate = self.get_accelerate_config(self.config)
        return self._accelerate

    @accelerate.setter
    def accelerate(self, config: FlatDict) -> None:
        self._accelerate = config

    @property
    def deepspeed(self) -> dict | None:
        if self.state.deepspeed_plugin is not None:
            return self.state.deepspeed_plugin.deepspeed_config
        return None

    @contextmanager
    def accumulate(self, *models: nn.Module):
        if not models:
            models = (self.model,)
        yield Accelerator.accumulate(self, *models)

    @property
    def device(self) -> torch.device:
        return self.state.device

    @property
    def world_size(self) -> int:
        if "state" in self.__dict__:
            return self.state.num_processes
        return 1

    @property
    def rank(self) -> int:
        if "state" in self.__dict__:
            return self.state.process_index
        return 0

    @property
    def local_rank(self) -> int:
        if "state" in self.__dict__:
            return self.state.local_process_index
        return 0

    @cached_property
    def accum_steps(self) -> int:
        return self.gradient_accumulation_steps

    def get_accelerate_config(self, config) -> FlatDict:
        accelerate = FlatDict()
        if "accelerate" in config:
            accelerate.update(config.accelerate)
        if "precision" in config:
            accelerate.mixed_precision = config.precision
        if "dynamo" in config:
            accelerate.dynamo_backend = config.dynamo.upper()
        if "accum_steps" in config:
            accelerate.gradient_accumulation_steps = config.accum_steps
        if "kwargs_handlers" not in accelerate:
            accelerate.kwargs_handlers = []
        # Must NOT set project_dir here as timestamp is not synced yet
        # config.project_dir = self.dir
        if os.getenv("ACCELERATE_USE_DEEPSPEED", "false").lower() == "true":
            deepspeed_config = config.get("deepspeed", os.getenv("ACCELERATE_DEEPSPEED_CONFIG_FILE"))
            accelerate.deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.get_deepspeed_config(deepspeed_config))
        return accelerate

    def build_dataloaders(self):
        datasets = {k: d for k, d in self.datasets.items() if k not in self.dataloaders}
        default_kwargs = self.config.setdefault("dataloader", NestedDict())
        dataloader_kwargs = NestedDict({k: default_kwargs.pop(k) for k in self.datasets if k in default_kwargs})
        for k, d in datasets.items():
            dataloader_kwargs.setdefault(k, NestedDict())
            dataloader_kwargs[k].merge(default_kwargs, overwrite=False)
            dataloader_kwargs[k].setdefault("shuffle", getattr(d, "train", True))
            dataloader_kwargs[k].setdefault("drop_last", not getattr(d, "train", True))
            self.dataloaders[k] = utils.data.DataLoader(d, collate_fn=self.collate_fn, **dataloader_kwargs[k])
        default_kwargs.update(dataloader_kwargs)
        for k, d in self.dataloaders.items():
            self.dataloaders[k] = self.prepare(d)

advance

Python
advance(loss) -> None

Backward loss and step optimizer & scheduler.

Parameters:

Name Type Description Default

loss

The loss tensor from which to backpropagate.

required
Source code in danling/runner/accelerate_runner.py
Python
def advance(self, loss) -> None:
    r"""
    Backward loss and step optimizer & scheduler.

    Args:
        loss: The loss tensor from which to backpropagate.
    """

    self.backward(loss)
    if self.sync_gradients:
        if self.config.get("max_grad_value") is not None:
            self.clip_grad_value_(self.model.parameters(), self.config["max_grad_value"])
        if self.config.get("max_grad_norm") is not None:
            self.clip_grad_norm_(self.model.parameters(), self.config["max_grad_norm"])
    self.optimizer.step()
    if self.scheduler is not None:
        self.scheduler.step()
    if self.ema is not None:
        self.ema.update()
    self.optimizer.zero_grad()
    self.config.steps = self.step
    self.config.iters += 1